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A Patch-based Algorithm for Single
Image Generation



Single Image Generation

"Generate diverse image samples,

visually similar to a reference im- e
.- . . :
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SinGAN'’s results [1]

age but nonetheless different.”
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[1] Shaham, Dekel, and Michaeli, “Singan: Learning a Generative Model from a Single Natural Image”,
2019.



Challenges

Visual fidelity
e similar structure

e similar details
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Challenges

Visual fidelity Diversity
e similar structure e varied samples

e similar details
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Patch-based algorithm

generated u reference 0



Patch-based algorithm

Minimize energy of Kwatra et al. [2]:
E(u)=>)_ m'an pll>
pEu

with patch p, p € R11x11x3

generated u reference i

[2] Kwatra et al., “Texture Optimization for Example-Based Synthesis”, 2005.



Energy minimization

Nearest Neighbor (NN) mapping
¢ u— i

E(u,0) =) lp—o(p)l3

peu

Alternate minimizations on u, ¢



Energy minimization

Nearest Neighbor (NN) mapping
¢:u— i

E(u.¢) = lp—o(p)l3

peu

Alternate minimizations on u, ¢

[3] Barnes et al., “PatchMatch”, 2009.

optimization over ¢ - NN Search

il > llp—o()l3 (1)

peu

Fast approximation with PatchMatch [3]



Energy minimization

Nearest Neighbor (NN) mapping
¢ u— i

E(u.¢) = lp—o(p)l3

peu

Alternate minimizations on u, ¢

[3] Barnes et al., “PatchMatch”, 2009.

optimization over ¢ - NN Search

il > llp—o()l3 (1)

peu

Fast approximation with PatchMatch [3]

optimization over v - Reconstruction

min > _[lp — ¢(p)|3 (2)

peu

Least-squares problem



Multiscale

Energy minimized at multiple scales
e Gaussian pyramid of factor 2-

e coarse-to-fine synthesis
u — up—1 — ... U

e Upsample ¢, rather than v




Initialization from noise

Reference 3 scales

4 scales 5 scales



Optimal Transport
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Optimal Transport

Minimize Wasserstein-2 distance between patch

u distributions of u and i [4]
OT(u) = max > min (Ilp = B3 — B5) + > B
peu

peii

generated u reference i

[4] Houdard et al., “Wasserstein Generative Models for Patch-Based Texture Synthesis”, 2021.



Optimal Transport (OT)

Optimal transport energy minimization:
e computationally expensive steps
e multiscale
Strategy
1. First ¢ levels with Optimal Transport
2. Next L — ¢ levels with simple energy




Algorithms

PSin

PSinOT

u < rand()
fors=1L,...,0do
u < rescale(u, scale = s)
for i=1,...,10 do
¢ < NN-Mapping(u, i)
u <+ Reconstruction(¢, i)
end for
end for

u < OTSolver(u, [L, ..., L — £])
fors=L—/, ....0 do
u < rescale(u, scale = s)
fori=1,...,10 do
¢ < NN-Mapping(u, i)
u <+ Reconstruction(¢, i)
end for
end for
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Results

Reference

SinGAN

PSin

PSinOT

11



Patch originality

Reference

SinGAN

PSinOT
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Quantitative metrics

Fidelity: Single Image Fréchet Inception Distance (SIFID), Optimal Transport cost
Diversity: Average pixelwise standard deviation for N images generated

Algorithm | SIFID | | Optimal Transport | | Diversity T
SinGAN 0.12 1.34 0.34
PSin 0.45 0.94 0.62
PSinOT 0.06 0.36 0.53

Average metrics for 50 samples for images from Places50. best, second best.



Patch-based algorithm for single image generation

+ no learning / limited learning
+ good quality in seconds
+ choice between diversity and fidelity

— limited originality

Code: ©) github.com/ncherel/psin
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https://github.com/ncherel/psin
github.com/ncherel/psin

Patch-based Stochastic Attention




Non-local operations

Local convolution

15



Non-local operations

Local convolution

Non-local operation

15



Non-local operations

Local convolution

Non-local operation

f(x,y)= Z Z S(uy,y, Uy 1) - Ugr
X/ y/
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The Attention framework

Full Attention [5]
Queries @ € R"™%9, keys K € R™ 9, values V € R"*9";

1 n
Vi € [1, n], Attention(g;, K, V) = = Z elaiki)y,;
1 J:1

Attention(Q, K, V) = softmax(QK ")V

[5] Vaswani et al., “Attention Is All You Need”, 2017.
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The Attention framework

Full Attention [5]
Queries @ € R"™%9, keys K € R™ 9, values V € R"*9";

1 n
Vi € [1, n], Attention(g;, K, V) = = Z elaiki)y,;
1 le

Attention(Q, K, V) = softmax(QK ")V

Complexity for n elements (pixels, patches, ...)
e Computational complexity: O(n?d)
e Memory complexity: O(n?); n = 2562 requires 16GB of RAM

[5] Vaswani et al., “Attention Is All You Need”, 2017.
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Efficient attention

Subsampling the key set K: Linear approximation of softmax:

e strided pattern softmax(QK )V ~ ¢(Q)y(K)TV

e local neighborhood [6]
Linear Transformer [7], Performer [8]

strided subsampling pattern

[6] Parmar et al., “Image Transformer”, 2018.

[7] Katharopoulos et al., “Transformers Are RNNs: Fast Autoregressive Transformers with Linear At-
tention”, 2020.

[8] Choromanski et al., “Rethinking Attention with Performers”, 2020.
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The Attention framework

Going back to the attention equation:

n n

1
Vi € [1, n], Attention(g;, K, V) = c g e<qf’kf>\/j where C; = g elai-ki)
"j=1 j=1

N
&

Decreasing weights in attention after normalization

Finite and small amount of non-negligible weight terms
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Sparse attention

Sparse attention using the nearest neighbors

Attention(@, K, V) = softmax(QK ")V ~ AV
where A is a sparse matrix, with non-zeros entries for the top-k weights.
Slaiky) it je (i)

’ and (i) = arg, _max }(q;,kj>

where A;; =
7.! .
0 otherwise je{l,...,n

Efficient algorithms for nearest neighbor search: KD-Trees, LSH [9], PatchMatch

[9] Kitaev, Kaiser, and Levskaya, “Reformer”, 2020.
19



Patch-based Stochastic Attention Layer

Approximate 1 using parallel PatchMatch [10]

A A

(a) Initialization (b) Propagation

[10] Barnes et al., “PatchMatch”, 2009.

(c) Search
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Differentiability

PatchMatch with a single match is not differentiable with respect to all variables as a
pseudo-argmax.

1t (i) = {}

Attention(Q, K, V) = AV where A;; =
0 otherwise

A depends on @, K but not its entries. 2 solutions:

e K Nearest Neighbors (KNN)
e Neighbors aggregation

21



Differentiability with KNN

We consider the set of nearest neighbors of
element (/) to construct the matrix of
similarities S:

(@i, K;) it j e (i)

5,'",' = )
0 otherwise.

The matrix A is then obtained by
normalization of the rows:

A = softmax(S)

N

)
/
e
\

i

3 Nearest Neighbors
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Differentiability with aggregation

We use the neighbors’ neighbors. N is the
set of spatial neighbors of /.

i’ € N and j' € (i)
and i —i=j —j

5, = (Qir, Kir) if{

0 otherwise,

The matrix S is then normalized along the
rows.

N(i)

Neighbors aggregation
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Complexity

Complexities and memory (GB) required by the attention layer when the input size is

increasing. n is the number of pixels. k =3,p=7

Attention Method

Mem. complexity

Mem. for 2562

Mem. for 5122

Full Attention
PSAL-k
PSAL Aggreg.

O(n?)
O(kn)
O(p*n)

15.26
0.04
0.74

250.04
0.18
2.95

Attention Method

Computational complexity

Full Attention
PSAL-k
PSAL Aggreg.

O(n?d)
O(nd log nlog k)
O(nd log n)
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Colorization task

Guided image colorization

ATTENTION

CONCAT

23



PSAL differentiability

Experiments confirm that PSAL with 1 neighbor is not differentiable end-to-end.

Attention Method | ¢> loss
Full Attention* | 0.0024
PSAL 1 0.0083
PSAL 3 0.0023
PSAL Aggreg. 0.0019

26



Colorization results
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Inpainting task

Comparison with ContextualAttention [11], using PSAL:

e state-of-the-art at the time
e 2-step model using (Full) attention for refinement

OO0
e Contextual
Attention Layer D H |:|
Concat

égz;réq; l«?esﬁlt ’ D D D D D D Ipaintlng esult

uu Dilated Conv.

Refinement architecture in ContextualAttention

[11] Yu et al., “Generative Image Inpainting with Contextual Attention”, 2018.
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Inpainting metrics

Quantitative results: no degradation with the approximation

Attention l1 loss | | £o loss | | SSIM T
ContextualAttention | 11.8% 3.6% 53.7
PSAL (ours) 11.6% | 3.6% 54.1

Average inpainting metrics on Places2 validation set.

29



High-resolution inpainting

30



Patch-based Stochastic Attention

+ very low memory

+ scales to high resolution images and videos

— cannot approximate high entropy attention
Code: €) github.com/ncherel/psal

Full text: https://arxiv.org/abs/2202.03163

31


https://github.com/ncherel/psal
github.com/ncherel/psal
https://arxiv.org/abs/2202.03163
https://arxiv.org/abs/2202.03163

Current work




Diffusion

Diffusion is state-of-the-art for conditional
and unconditional image generation:

e text-to-image
e super-resolution

e inpainting

[10] Ho, Jain, and Abbeel, “Denoising Diffusion Probabilistic Models”, 2020.
[11] Rombach et al., “High-Resolution Image Synthesis With Latent Diffusion Models”, 2022.
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Diffusion : quick introduction

Modeling complex data distributions

through: j*‘%"‘
e forward process: g(xt | xt—1) g it .ﬂj o
.L X R r*
e learned backward process pg(xt—1 | x¢) = I L. it

Training by denoising:

q(xe[xi-1)
L(6) = Exc [|Ix — fa(x + €)|?] _’—’@—> — - — ()

Po(Xi—1[x:)

TR [ _
O D : :
I EECT
b
(Bl i 1
I HEE 0

83



Current inpainting experiments

e Training on a single texture
e Tiny model: 160k parameters

e 20-min training

noisy full image clean full image

clean masked image
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First results

m _..Dl

ettt

Direct inpainting

Direct inpainting Diffusion

Diffusion

85



Questions
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PatchMatch on features - self-similarity hypothesis

Original image and 3 feature maps as used in ContextualAttention



PSAL for super-resolution

For single-image super-resolution, Cross-Scale attention [12] can be efficiently
approximated with PSAL as indicated by similar PSNR scores on the Urban 100
dataset.

Attention Method Zoom x2 | Zoom x3 | Zoom x4
Cross-Scale Attention 33.383 29.123 27.288
PSAL 33.375 290.112 27.184

[12] Mei et al., “Image Super-Resolution With Cross-Scale Non-Local Attention and Exhaustive Self-
Exemplars Mining”, June 2020.



Diffusion, denoising and score-matching

Score-matching [13] is about learning the score of the data distribution: V log p. For
a data point x, and a gaussian noise € ~ N (0,c/):

y=x+e

Tweedie's formula says that the MMSE denoiser D verifies:

! (D(y) —v)

o2

Vy logp(y) =

Through denoising, we have access to the (smoothed) log-likelihood / score.

[13] Song and Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution”, 2019.
[13] Rombach et al., “High-Resolution Image Synthesis With Latent Diffusion Models”, 2022.



Diffusion - Additional Results

Direct inpainting Diffusion Direct inpainting

Diffusion
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